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Abstract. The identification and forecasting problem of non-periodic time series with 
wave structure and the problem of latent periodic component detection in stochastic 
time series are considered. The adaptive forecasting method is proposed using the spe-
cial autoregression representation of wave time series and both frequencies and 
amplitudes of partial harmonics identification. An artificial neural network comprising 
band-pass digital filters and a generalization unit is designed that allows the real-time 
extraction of an arbitrary number of harmonic components from the analyzed signal. 
Learning algorithms for the proposed architecture are developed. Model simulation 
results are presented and the results of real problem solution of stock prices forecast-
ing and trading decision support are also considered. 
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1 Introduction 
 

The necessity of complex structure time series fore-
casting takes place in many problems of automatic 
control, signal processing, econometrics and so on 
[1]. The efficiency of forecasting essentially depends 
from the adequacy of time series model. The popular 
forecasting methods usually use the simple models 
like "trend + noise" or ARMA models in combina-
tion with recurrent parameters identification algo-
rithms [2,3]. In practice, however, the real time series 
have a more complex structure such as non-periodic 
oscillating time series. Even the simple superposition 

of a number of harmonics with aliquant frequencies 
leads to the time series structure mentioned above. 
Such a time series, so calls "wave" time series, are 
widely used as mathematical models of disturbances 
in control systems, seasonal processes in economics 
[4], stock prices in financial engineering and in other 
different applications [5]. 
 
 The identification problem of such time series is 
considerably simple in the case, when the wave com-
ponent is the superposition of a number of harmonics 
with known frequencies and phases, at that the un-
known amplitudes identification may be performed 
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by simple algorithms like recurrent least square 
method. The problem has become more complicated 
when both frequencies and phases are arbitrary un-
known and changing in time. In general case such 
time series are non-periodic and unknown frequen-
cies extraction by the Discrete Fourier Transforma-
tion (DFF) methods [6] does not lead to the good 
result. 
 
Moreover, in many signal processing related applica-
tions a problem of periodic components detection 
from a noise-disturbed signal arises. Such a problem 
is usually reduced to estimation of harmonic compo-
nent parameters against background of noise and 
solved using traditional DFF methods. However, 
when non-periodic oscillating time series signal 
processing is required, some additional problems 
arise and alternative to the DFF methods based on 
adaptive digital filters [3,7] are more frequently used. 
 
In this paper an adaptive neural networks based ap-
proach for wave time series forecasting is considered 
based on a special assignment of wave component 
auto-regression model as a superposition of harmon-
ics with tuning frequencies. In such a case, the suit-
able identification algorithm ensures non-stationary 
frequencies tracking. The proposed method based on 
the structural modeling approach [8,9] is seemed to 
be very useful for seasonal and oscillating economic 
time series. The periodic components detection 
method based on neural network techniques [10] is 
also proposed. 
 
2 Wave time-series identification 
 
Consider the trend-seasonal time series model
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where kY  - the time series value at instant k , n  - the 
degree of polynomial component, m  - number of 
harmonics with  frequencies ππω <=< 020 Tf jj , 

0T  - sampling  period, kξ - random zero mean 
measurement noise. The time series forecasting is 
based the identification of mathematical model 
parameters iD , jA , jB , jω . Because the 
identification of trend and wave components 
performs by different methods, at first it is necessary 
to divide the components of time series. At that the 
trend component may be extract by the following two 
methods.  
А) Discrete smoothing method. 
In such a case trend is extracted by means of law-
pass filter realized by exponential smoothing algo-
rithm. Let 0=n , i.e. trend is a constant bias 0D .  

Then using the smoothing procedure        
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the initial time series (1) can be divided to the slow 
component - trend estimation s

kY and the fast one 
s

kkk YYY −=~  , which is the linear transformation of 

the wave component distorted by random noise kξ~ ,     
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It is evident that the smoothing transformation does 
not change the wave component spectrum. In general 
case 0>n  it is possible to apply the high order ex-
ponential smoothing. 
 
B) Discrete differentiation method 
In such a case the trend extraction is performed by 
discrete differentiation of time series (1), which is 
previously smoothed by discrete wide-band filter in 
the purpose of noise reduction: 
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As a result the first difference sequence kV  has the 
structure of wave component distorted by the equiva-
lent noise 
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At that both methods lead to the identification prob-
lem of wave time series 
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where kk Yy ~= , kk ξζ ~=  in case (a) and kk Vy = ,  

kk νζ = in case (B). 
 
Using z - transformation, the model (6) may be pre-
sented in the form: 
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Realizing the inverse transformation the equation (6) 
may be representing in time domain in the linear 
auto-regression form:  
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T
121 )+−− + mkk yy  is the time series "prehistory" 

vector,  ( )110
T ,...,, −= mββββ  - model parameters. 

 
Using the quadratic identification criterion 
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one can obtain the recurrent algorithm of the model 
identification: 
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where tuning parameter γ  may be used for trade-off 
adjusting between tracking and flittering properties 
of the algorithm (10). Using the non-parametric crite-
rion of time series property changing, the following 
tuning algorithm may be used:  
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where q  is a memory depth, δ  и γ∆  - parameters, 
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is an optimal one step prediction of time series ob-
tained by current estimates. 
 
Frequencies jω  are connected with parameters jβ  
by the equation  
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Taking into account that 
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frequencies jω  may be determined as a roots of 
power polynomial from the argument ωcos . 
 
Similarly at any instant k  the estimations of wave 
component harmonics amplitudes 

( )T110110 ,,,,,,, −−=Θ mm bbbaaa KK may be ob-
tained by the quadratic identification criterion mini-
mization  
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where the extended vector ),( mkY and matrix 

),( mkΦ  are defined as 
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and 1,0, −= mjjω)  are the frequencies estimations. 
As a result 
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3 Optimal time-series forecasting 
 
Optimal forecast of wave component for p  steps 

pky +
)  may be obtained using the one-step forecast  

(12) in the form: 
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where elements iy , 1−+≤≤ pkik  in vector 

( )mpky ,+)  are replaced by their forecasting values 
calculated in accordance with (17). 
 
The obtained expressions may be used for initial time 
series (1) short-term forecasting in accordance with 
accepted method of components division and struc-
tural wave analysis. For method (A) the forecasting 
formula is 
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where s
pkY +  is a trend component and  pkY +

~  is a 

wave component forecast. 



 

 

 For the trend component forecasting it is expediently 
to use the exponential smoothing method. Then  
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where coefficients ( )n

kkik SSD ,,0 K   are expressed 

from the exponential averages l
kS , nl ,0= : 
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The wave component forecast is carried out using the 
proposed technique.  
 
For method (B) taking in account an evident relation: 
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the forecast formula may be represent as: 
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where first difference forecast is carried out using the 
proposed frequency estimation method. 
  
4 Harmonic components extraction  
 
In practice for harmonic component extraction from 
the stochastic time series, non-recursive filters are 
widely used [8,11,12]. However, as it is noted in 
[13], the approach based on non-recursive filters is 
subject to some restrictions especially in the case 
when the harmonic component frequencies are con-
siderably smaller than the sampling frequency. The 
point is that if the harmonic components are mixed 
with a high frequency noise, the noise component 
during digital processing will be amplified suppress-
ing the original signal. The harmonic components 
extraction problem may be solved using recursive 
filters of order 2 tuned on different frequencies [14]. 
The structure of such a filter is shown on fig. 1 [8], 
where 21210 ,,,, ββααα  are the tuned filter parame-
ters, ( )ky�  - filtered sequence. The recursive adaptive 
filter structure coincides with the structure of artifi-
cial recursive neural network designed to process 
stochastic signals [11].  
 
In [10] the problem of extraction of m sinusoids with 
known frequencies mωωω ,..., 21  from stochastic 
time series ( )ky  using a set of band-pass filters is 
considered. The corresponding structure of the set of 
filters is shown on fig. 2.  
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Fig. 1. 

 
Every filter has the transfer function given by  
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and the transfer function of the set of filters can be 
presented  as  
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Then the filter outputs ( ) ( ) ( )kykyky m�,...,�,� 21  are 
combined on the base of the stochastic approximation 
procedure with the gain k/1 , hereby the output sig-
nal is assumed to include only �pure� harmonics.  
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For unknown frequencies, the so-called �notch� filter 
[9] was proposed (fig. 3). Here BPF  is a band-pass 
filter with unity gain and zero phase shifts at the 
resonance frequency. In this case, a particular sinu-
soid ( )ky�  can be extracted by subtraction of the 
band-pass filter output from its input. Hereby the 
filter gains for low and high frequencies are the 
same, so the high frequency noise is not amplified 
even for very low frequency extracted sinusoids. 
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5 Band-pass biquadrate filter  
 
A band-pass filter can be implemented using a bi-
quadrate element ("biquad") [8,15] shown on fig. 4. 
Here ( )ky�  is the extracted harmonic signal, 

( ) ( ) ( )kykykv �−=  is the error signal on the notch 
filter output, 21 , ββ  are the tuned filter parameters, 

)(ks  is the signal proportional to derivative of the 
error ( )kv  with respect to parameter 2β . The transfer 
function of the band-pass filter  
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is nonlinear with respect to parameter 1β . It allows 
the resonance frequency tuning with the gain being 
kept constant for all other frequencies.  
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The resonance frequency of the transfer function (5) 
is defined as 
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and if 1β  and 2β  are small, an approximate estimate 
is valid 
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that is a linear function of 1β  when 2β  is constant. 
During the extraction of a particular sinusoid from 
the original signal, 2β  can be kept constant, and 
tuning is performed only by parameter 1β  variation. 
After parameter 1β  has been tuned, one can try to 
tune 2β  to obtain a better selectivity. 
 

6 Filter tuning algorithms 
 
For filter tuning a standard gradient procedure can be 
used 
 

( ) ( ) )()(111 kskvkk ηββ +−=   (28) 
 
(here η  is a step size parameter). In the general case 
this procedure coincides with the delta-rule for artifi-
cial neural network learning. It should be noted that 
biquad may be used as an elementary artificial neu-
ron, because the derivative signal is produced by the 
biquad itself (Fig. 4). 
 
For the case when m  sinusoids must be extracted in 
[9] it was proposed to use a cascade structure con-
taining ( ) mmm ++ 2/1 tuned biquads. This idea has 
become the base for the neural network filter shown 
on fig. 5. 
 
Band-pass adaptive recursive filters used as elemen-
tary neurons are tuned with the delta-rule in the fol-
lowing form [9,12] 
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where j  in j

1β  is the corresponding sinusoid num-
ber. In the presence of an intensive noise the learning 
is desired to have further smoothing properties. For 
this purpose the following nonlinear modification of 
exponentially weight Goodwin-Ramadge-Caines 
algorithm [14] was proposed  
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where parameter α  defines a trade-off between trac-
ing and smoothing properties of the algorithm. 
 
 This structure implements parallel computing and 
harmonic frequencies can be readily calculated on the 
base of parameters )(1 kjβ using expression (6). 
 
 
When the learning of elementary filters mFFF ,...,, 21  
is finished, the network filter outputs  

)(�),...,(�),(� 21 kykyky m  produce sinusoids of various 
frequencies contained in the original signal )(ky . 
 
Magnitudes of the harmonics contained in )(ky  can 
be estimated using the generalized prediction  
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built according to the adaptive multi-model approach 
[17]. The prediction satisfies the unbiasedness condi-
tion  
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and is calculated in the output generalization unit G 
that appears to be m-input adaline [8]. Here 
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mcccc ,...,, 21= , 

( )T
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( )1×m  vectors 
 

Introducing the generalized prediction error  
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the unknown weighting parameter vector c  can be 
found as a saddle point of the Lagrange function 
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where λ  is the indeterminate Lagrange multiplier. 
The Kuhn-Tucker system solution gives a required 
estimate 
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that can be rewritten in the recursive form [15] 
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where *c  is an estimate produced by an ordinary 
recursive least squares algorithm. 
 
In real-time non-stationary signal processing it is 
appropriate to optimize the Lagrange function (15) 
using a gradient like procedure  
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Vector c  estimation error is calculated as 
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A value of the step size parameter )(kcη  that pro-
vides a maximum convergence rate can be obtained 
as the solution of the following differential equation 
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and the tuning algorithm for the output neuron G can 
be finally written as  
 

( )( )

( ).1)()(

)1()(

,
)1()()(�2

1)1(1)(2

)1()(

2

2

−+

+−=

−−

−−−++

+−=

Ekck

kk
Ekkwky

Ekckkw

kckc

T

T

λη

λλ
λ

λ

 (42) 

 
If the Lagrange multiplier tuning loop maintains 

1)( =EkcT  the first expression in (23) takes the 
form of a well known in the artificial neural network 
theory Widrow-Hoff learning algorithm [8] 
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that, in turn, is one of modifications of the delta-rule 
tuning.  
 
7 Simulation results 
 
As an example consider the simulation results for 
proposed forecasting algorithm, the initial time series 
is chosen as the superposition of three harmonics 
with frequencies [ ]50.014.151.2=ω  and ampli-
tudes [ ]15.18.0=A . The measurements are dis-
torted by the random noise with uniform distribution 

in interval 5.0± . The simulation results (Fig.6) illus-
trated that DFT extracts a fictitious harmonics 
whereas the proposed method ensures the stable es-
timation of frequencies and amplitudes.  
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Fig. 6. Forecasting algorithm simulation 
а) initial time series; b) DFT of time series;  

c) time-series forecasting;  
d) estimated harmonics frequencies. 

 
 
The proposed method is applied for the problem of 
stock prices forecasting and buy/sell decision support 
[8]. The method is based on the idea of harmonic 
structure analysis of stock prices time series. Many 
samples of stock prices have a wave (non-periodic 
oscillating) structure so can be represent as a combi-
nation of the number of harmonics with unknown 
and changing frequencies and amplitudes.  
 
The peculiarities of the method are the initial time-
series decomposition on the slow (trend) and fast 
(oscillatory) components with the help of digital fil-
ters. The adaptive technique is used for model updat-
ing with the combination of detection of the days 
when the time series change its properties. 
 
The proposed procedure of data processing and deci-
sion includes: identification of harmonic models us-
ing accumulated data (amplitudes and frequencies as 
well as necessary number of harmonics estimation) 
and short-term forecasting of stock prices and deci-
sion function construction in order to obtain the 
buy/sell decision recommendation in current day: 

-  buy, if the price is near the local minimum in 
current day and predicted price increases; 

-  sell, if the price is near the local maximum and 
the predicted price  decreases; 

-  hold , in over cases. 
 

Computer simulation has been fulfilled in order to 
evaluate the performance of the proposed method. 
The real data of stock prices (Fig. 7) has been used. 
The time series processed step-by-step (one step is 
one day), moreover in any current day only the pre-



 

 

vious data are assumed to be known so the actual 
behavior of stock trader is simulated. For each step 
the following calculations are performed: 

-      the initial time series is separated into the 
slow (trend) and fast (wave) components by the digi-
tal filtering algorithms (Fig. 8,10,12); 

- the harmonic components of both trend and 
wave terms as well as first difference are estimated 
(Fig. 9,11,13) using the developed techniques. The 
four harmonics model is used; 

- the short term (5 days ahead) forecast based 
on the estimated harmonic model (Fig. 14) is calcu-
lated (the solid line � real data, dotted line � fore-
cast). In Fig. 15 the same curves are presented in 
enlarges scale; 

- using the forecasted data, the decision rule is 
created. The decisions �buy� or �sell� is accepted if 
the estimated local minimum or maximum of pre-
dicted time-series is located near the current day re-
spectively. The decision �hold� is accepted in any 
over cases. The fragment of decision sequence is 
presented at Fig. 16. 

-  passing on to the next steps the actual profit or 
losses are calculated. In Fig. 17 the accumulated 
profit from the first to current day is presented, i.e. 
the actual capital increment per one stock attained by 
the stock trading using the proposed forecasting 
method and decision rule. 
The simulation results demonstrate the stable grows 
of the profit even in the case when the trend of stock 
prices has the tendency to the decreasing.  
    
Conclusion 
 
The proposed technique ensures the forecasting of 
non-periodic time series with wave structure. It can 
be treated as the development of structural approach 
for spectral analysis [7,8]. In such a way the critical 
point is the determining the optimal number of har-
monics in the predictive model of wave component. 
Such a choice may be done using a multi-model ap-
proach, at that the adaptive algorithm of high level 
may adjust the model structure [17]. 
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